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Monte Carlo simulation of fatigue of a fibre

tow undergoing chemical reaction
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Monte Carlo simulation has been used to model environmental attack of a fibre tow, and
suggested that such attack could lead to fatigue-type behaviour under static load
conditions. The system was assumed to be fibre dominated with the presence of matrix
cracks relaxing stress in the matrix and providing a path for environmental species to reach
the fibres. Lifetime under load was related to the fibre-environment reaction rate and
distribution of forces from broken fibres. Fatigue exponents ranging from 1.0 to 1.5 were
predicted for selected reaction rates at stress levels less than 140 MPa. Simulation results
were compared with literature data, and predicted fatigue exponents were substantially
lower than those observed experimentally. This result could suggest that fibre-environment
chemical reaction was not the sole mechanism operable in experiments. However, it was
suggested that a stress dependent reaction rate could be used to improve the correlation
between the simulation and experimental results. C© 2001 Kluwer Academic Publishers

1. Introduction
Ceramic matrix composites are candidates for many
high temperature structural applications. Lifetime at
temperature under load is an important material char-
acteristic for these applications. Limited lifetimes have
been observed experimentally [1–12], and several
degradation mechanisms have been identified includ-
ing fibre-environment reaction, creep and wear of fi-
bre surfaces during cyclic loading. Fibre-environment
chemical reactions have been identified in high-
temperature, oxidizing environments [13–15]. As a re-
sult, fibre coatings were developed to provide long life-
time (<10000 h) at elevated temperature (<1200 ◦C)
[16–18]. Recently, lifetime degradation at intermedi-
ate temperatures (600–1000 ◦C) in composite systems
containing coatings has been reported [6–10, 12].

Several researchers [7–10] have reported lifetimes
as short as 2 h for enhanced SiC-SiC composites under
constant load at temperatures below 1000 ◦C. These
reduced lifetimes at intermediate temperatures are a
significant concern for any application experiencing
transient temperatures (heating and cooling cycles) un-
der load [6]. One mechanism suggested for these short
lifetimes was the reaction of fibres with environmental
species at temperatures below which the coatings be-
come effective [12]. Microstructural evidence of fibre
damage in failed specimens consistent with a chemical
reaction has been observed [19]. However, a relatively
small fraction of the fibres in any given sample showed
evidence of substantial reaction. Chemical reactions of
SiC fibres with oxidizing environments have been re-
ported [20–22], and the mechanism is generally related
to oxidation of carbon fibre coatings. The presence of

CO–CO2 species in the environment has been shown to
lead to chemical attack of SiC at temperatures as low
as 700 ◦C [22–24].

The purpose of this communication is to simulate
numerically a reaction between loaded fibres and oxi-
dizing environments, and determine if the fatiguetype
behaviour recently reported [7–9] could be expected to
result form such a reaction mechanism.

2. Theoretical
2.1. Characteristics of Monte Carlo

simulation of fibre reaction
Monte Carlo simulation is the numerical solution to
physical problems containing probabilistic characteri-
stics [25]. These probabilistic characteristics make an-
alytical solutions difficult or impossible to develop. In
Monte Carlo simulation, a computer performs calcu-
lations of system behaviour using mathematical rela-
tionships involving these probabilistic characteristics.
In this manner, the solution is determined in part by the
mathematical relationships, and, in part by the values of
the various probabilistic characteristics. While any sin-
gle solution will vary as the values of the probabilistic
characteristics vary, performing the numerical solution
many times can give insight into the behaviour of the
physical system over the entire range of probabilistic
characteristics. The validity of the numerical solution is
determined by the appropriateness of the mathematical
relationships and probabilistic characteristics. Random
number generators, often called pseudo-random num-
ber generators, are used to determine the probabilistic
characteristics. The effectiveness of the random number
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generator in providing truly random numbers will de-
termine the appropriateness of the probabilistic char-
acteristics, and, therefore, the validity of the numerical
solution.

The simulation described in this communication
models a rectangular fibre tow that is loaded externally,
exhibits mechanical behaviour that is fibre dominated,
and undergoes a chemical reaction between exposed fi-
bres and environmental species. The simulation allows
only one fibre to react with the environment species
initially, and the radius of the fibre reduces as a result
of this reaction. The initial condition of a single re-
acting fibre is consistent with a matrix crack allowing
environmental species access to some location in the
fibre tow. As the radius of the reacting fibre decreases
under a constant load, the stress on the reacting fibre
increases. Eventually, the fibre breaks, and the load on
the broken fibre is distributed to other fibres. Fibre fail-
ure was predicted using a critical strength approach by
simply comparing fibre stress to fibre strength. Fibres
neighbouring the broken fibre then begin to react as the
access of the environmental species progresses through
the fibre array. In this manner, the Monte carlo simu-
lation iterates until complete failure of the fibre array
occurs. A flow chart of the simulation is shown in Fig. 1.

The reaction between the fibres and environment
was modelled as a gas–solid reaction that resulted in
volatilization of fibre material. Reaction resulted in a
reduction in the radius of any fibres exposed to the
gaseous reactants, and the reaction was assumed to be a
uniform surface reaction that removed an equal volume
of fibre material in each iteration step. It was assumed
that any deposition of volatilized species occurred in
a manner that had no influence on subsequent reac-

Figure 1 Flow chart of Monte Carlo simulation described in this com-
munication.

tions, i.e. the reaction rate never slowed due to diffusion
through a product layer.

External load could be transferred to individual fibres
under either isostrain or isostress conditions. Isostrain
conditions assume that individual fibres are in a uniform
state of strain, but can be under differing states of stress.
The stress in each individual fibre was calculated from
the nominal stress, σnom, by assuming that the aggregate
fibre stress, σfibre, could be calculated from

σfibre = σnom

Vf
(1)

where Vf is the volume fraction of the fibre.
An inherent assumption in Equation 1 is that all

stress is transferred to fibres, and the matrix remains
unstressed. This assumption is consistent with a fibre
dominated system in which the matrix phase has fully
cracked, and provides little mechanical integrity. The
strain in the fibre array, σfibre, can be calculated using a
simple uniaxial approximation

εfibre = σfibre

Efibre
(2)

where Efibre is the equivalent modulus of the fibre array.
Since the fibres are parallel to each other and perpen-

dicular to the applied stress, the equivalent modulus of
the fibre array can be calculated from [26]

Efibre =
∑

i

∑
j

Ei, j

n
= Ē (3)

where Ei, j is the modulus of fibre i, j ; n is the number
of fibres in the array; and Ē is the average fibre modulus.

Combining Equations 1–3, the strain in the fibre array
was determined from

εfibre = σnom

Vf Ē
= ε̄i, j (4)

where εi, j is the strain in fibre i, j .
However, the strain in fibre i, j can also be expressed

as

εi, j = σi, j

Ei, j
(5)

where σi, j is the stress in fibre i, j ; and Ei, j is the
modulus of fibre i, j .

Combining Equations 4 and 5, the stress in fibre i, j
can be calculated from

σi, j =
(

σnom

Vf

)(
Ei, j

Ē

)
(6)

Notice that if the fibres all exhibit the same modulus,
Equation 6 condenses to

σi, j =
(

σnom

Vf

)
= σfibre (7)

Equation 7 suggests that all fibres would be under the
same stress, and this condition corresponds to the
isostress condition.
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During the Monte Carlo simulation, the stress on each
reacting fibre would be expected to increase in each it-
eration step as the radius decreases. The stress increase
was modelled using a constant force assumption ac-
cording to

(σi, j )
new = (σi, j )

prev
[

(ri, j )prev

(ri, j )new

]2

(8)

Where (σi, j )new is the stress on fibre i, j in the current
iteration step; (σi, j )prev is the stress on fibre i, j in the
previous iteration step; (ri, j )prev is the radius of fibre
i, j in the previous iteration step; and (ri, j )new is the
radius of fibre i, j in the current iteration step.

The constant force assumption does not allow redis-
tribution of forces in the fibre array until a fibre breaks.
Therefore, a fibre that is not reacting will be under a
state of constant stress until some other fibre breaks.

Distribution of force from a broken fibre to other
fibres in the array was modelled as an inverse power
law of the distance from the broken fibre according to

�Fi, j = Fbroken

{
1

(di, j )n

/ ∑
i

∑
j

[
1

(di, j )n

]}
(9)

where �Fi, j is the force distributed to fibre i, j ; Fbroken
is the force from the broken fibre that is to be distributed
to other fibres; di, j is the distance from fibre i, j to the
broken fibre; and n is the force disribution exponent.

Equation 9 can be summed over all fibres in the array
to yield

∑
i

∑
j

�Fi, j =
∑

i

∑
j

Fbroken

×
{

1

(di, j )n

/ ∑
i

∑
j

[
1

(di, j )n

]}
= Fbroken (10)

and force balance in the fibre array is maintained as a
fibre is broken and the force on that fibre is distributed
to remaining fibres.

2.2. Development and verification
of Monte Carlo variables

Monte Carlo variables developed by the simulation
included

• fibre radii;
• fibre strength;
• fibre moduli;
• reaction rates of individual fibres with the

environment;
• force distribution exponents of individual fibres.

The physical and mechanical characteristics of
NicalonTM fibres have been extensively studied
[27–33]. The fibre radii were modelled as a Gaussian
distribution about a mean of 6.9 µm and a standard
deviation of 1.3 µm [33]. The fibre strengths were

modelled as a Weibull distribution with a character-
istic strength of 1.1 GPa and Weibull parameter of 3.6
[28]. The fibre moduli were modelled as Gaussian dis-
tribution about an average of 145 GPa and a standard
deviation of 60 GPa [28]. The fibre reaction rates were
modelled as a uniform distribution ±10% from the ex-
pected value (the reaction rate of individual fibres was
randomly distributed from 90 to 110% of the expected
value). The force distribution exponents were modelled
as a uniform distribution ±1 from the expected value
(the force distribution exponent of individual fibres was
randomly distributed from n − 1 to n + 1).

Since the effectiveness of the random number gener-
ator determines the validity of the numerical results in
any Monte Carlo simulation, great care must be taken
to ensure that the random number generator is well be-
haved. The random number generator used in this sim-
ulation was based on the method of L’Ecuyer with the
addition of a Bays–Durham shuffle [34]. Five indepen-
dent sets of random numbers were used to generate
fibre radii, fibre strengths, fibre moduli, fibre reac-
tion rates, and force distribution exponents, respec-
tively. The effectiveness of each set of random num-
bers generated was checked using both chi-square and
Kolmogorov–Smirnov goodness-of-fit tests. The chi-
square goodness-of-fit [35] test compares the shape of
the random number distribution in the form of a discrete
distribution with the expected shape of a uniform distri-
bution. The Kolmogorov–Smirnov goodness-of-fit [36]
test compares the shape of the random number distri-
bution in the form of a continuous distribution with the
expected shape of a uniform distribution. While other
statistical tests have been proposed [35], the chi-square-
and Kolmogorov–Smirnov tests are the most com-
mon. Failure of either the chi-square or Kolmogorov–
Smirnov tests was defined to be greater than or equal
to 5% probability that the generated numbers were not
random.

The fibre radii generated were compared with a
Gaussian distribution exhibiting the expected mean and
standard deviation with a chi-square goodness-of-fit
test. Fibre strengths generated were compared with
the expected Weibull distribution using a chi-square
goodness-of-fit test. Fibre Moduli generated were com-
pared with the expected Gaussian distribution using a
chi-square goodness-of-fit test. In each case, failure of
these chi-square tests was defined as a greater than or
equal to 5% probability that the Monte Carlo variables
were not consistent with the respective distributions.

Fibre radii are expected to be determined primarily
by processing method, fibre strengths are expected to
be determined primarily by handling damage (flaws),
and fibre moduli are expected to be determined primar-
ily by chemical and microstructural characteristics. As
a result, correlation of random number sets and Monte
Carlo variables developed from those random number
sets was a concern. In particular, correlation of radii and
strengths, radii and moduli, and strengths and moduli
was thought to be inappropriate. Random numbers were
checked using the Pearson correlation test in pairs to ex-
amine correlation between the random numbers used to
generate (i) fibre radii and strengths, (ii) fibre radii and

2599



moduli, and (iii) fibre strengths and moduli. In addition,
Monte Carlo variables derived from the random num-
bers were checked in pairs for correlation of (i) radii
and strengths, (ii) radii and moduli, and (iii) strengths
and moduli. In each case, failure of each correlation test
was defined as a greater than or equal to 5% probability
that the pair was correlated.

The generation of random numbers or development
of Monte Carlo variables from those numbers was
considered valid only if all of the above tests were
passed. Two exceptions were in the chi-square and
Kolmogorov–Smirnov goodness-of-fit tests of the ran-
dom number sets used to generate the fibre radii and
moduli. The polar transformation method [37] was used
to generate radii and moduli within Gaussian distribu-
tions from these random numbers. As a result of the po-
lar transformation, the random numbers may not pass
standard goodness-of-fit tests. However, this result is of
little concern if the radii and moduli do pass goodness-
of-fit tests when compared with expected Gaussian dis-
tributions. Other than the two exceptions, failure of any
statistical resulted in the simulation results being dis-
carded, and the simulation rerun. Simulations were run
at least ten times with any set of input variables, and the
system behaviour was then reported as the average and
the error was reported as three times the standard error
of the mean [36]. In this way, the results (average ±
error) should encompass more than 99% of the possi-
ble averages of ten simulation runs with a given set of
input variables.

3. Results
Important input variables were the nominal applied
stress, the volume fraction of fibre, the size (length
and width) of the fibre array, and the fibre initially
undergoing reaction (reaction origin). The value of
nominal stress was varied from 5 to 20% of the fibre
strength. The volume fraction of fibre was held constant
at 40%. Using these two characteristics, aggregate fibre
stress (Equation 1) varied from 12.5 to 50% of the fibre
strength. The size of the fibre array was held constant
at 41 fibres long and 12 fibres wide (492 total fibres in
a tow) [19]. Four possible reaction origins were con-
sidered. The reaction origin identified as corner, was
defined as the fibre initially undergoing reaction situ-
ated in the upper right-hand corner of the fibre array.
The reaction origin identified as centre, was defined as
the fibre initially undergoing reaction situated in the
geometric centre of the fibre array. The reaction origin
identified as centred on the long edge was identified
as the fibre initially undergoing reaction centred on the
left-hand edge of the fibre array. The reaction origin
indentified as centred on the long edge was indenti-
fied as the fibre initially undergoing reaction centred
on the upper edge of the fibre array. Three of the re-
action origins (corner, centred on short edge, and cen-
tred on long edge) have obvious physical significance
associated with the likely path of reactants from the en-
vironment to the fibre tow. The fourth reaction origin
(centre) has little physical significance, but resulted in
some interesting numerical correlations with the other
three reaction origins.

Typical simulation results are shown in Fig. 2. Even
though the nominal stress was only 10% of the charac-
teristic fibre strength, the fibre array in the initial state
(Fig. 2a) contains about 1.6% broken fibres. These bro-
ken fibres are the low strength fibres predicted from a
low Weibull parameter (wide strength distribution). The
origin of the fibre–environment reaction, is the fibre in
the upper left corner of the array. Fig. 2b shows the fibre
array after approximately 5% of the fibres have broken.
A region of fibre failure developed radially from the
origin of the reaction. All of the fibres in this region
have under gone some chemical reaction with environ-
mental species. In addition, one fibre broke from pure
mechanical loading without any chemical reaction with
the environment. Fig. 2c shows the fibre array after ap-
proximately 10% of the fibres have broken. Failure is
clearly proceeding by growth of the region undergo-
ing chemical reaction with the environment. However,
it appears that growth is occurring preferentially along
the short edge of the fibre array. Fig. 2d shows the fibre
array after approximately 20% of the fibres have bro-
ken. Notice the region of fibre failure has now grown
completely across the short edge of the fibre array. Also,
a few other fibres have broken from pure mechanical
loading without the presence of a fibre–environment
chemical reaction. In Fig. 2e (approximately 35% of
the fibres broken) the region of fibre failure has begun
growing across the long dimension of the fibre array.
In Fig. 2f (approximately 50% of the fibres broken) the
region of fibre failure accounted for the left half of the
fibre array.

Fig. 2 shows some important characteristics of the
simulation results. First, some fibres break on initial
loading due the wide strength distribution, but the per-
centage of fibres broken on initial loading is typically
less than 2%. Second, the region of broken fibres tends
to grow across the short dimension of the fibre array
before appreciable growth across the long dimension
occurs. The growth across the short dimension of the
array corresponds to 15–20% of the fibres breaking.
This growth characteristic is largely independent of the
origin of the chemical reaction. Third, reaction of fi-
bre with environmental species dominates fibre failure
during most of the lifetime. Some fibres that are not
undergoing chemical reaction break (pure mechanical
failure), but account for few fibre failures until late in
the stimulation.

Fig. 3 shows the percent broken fibres as a function
of the time step (time in the simulation) for ten sim-
ulations where the reaction origin was the upper left
corner and ten simulations where the reaction origin
was the centre of the fibre array. Two characteristics
are largely independent of reaction origin. First, the per
cent of fibres broken is highly non-linear with time step,
and the general shape is independent of reaction origin.
Little increase in the per cent of broken fibres occurs
in the first 75% of the lifetime, and the majority of the
increase in the percent of broken fibres occurs in the
last 25% of the lifetime. The change in rate of increase
of percent fibres broken corresponds reasonably well
with the change in growth pattern form growth primar-
ily along the short dimension of the array (<15–20%
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Figure 2 Fibre array showing both load bearing (represented by 1) and
broken (represented by 0) fibres at (a) time step 0, (b) time step 116,
(c) time step 150, (d) time step 188, (e) time step 205, and (f) time step
211. The simulation parameters were isostrain conditions, a nominal
stress of 10% of the characteristic fibre stress, 40% by volume fibre, an
expected force distribution exponent of two, an expected reaction rate of
1% per time step, and a reaction origin at the upper left corner.

Figure 3 Percent broken fibres as a function of simulated time for a
reaction origin in the corner (ten simulations) and a reaction origin in
the centre (ten simulations): ©, reaction origin = corner; �, reaction
origin = centre.

fibres broken) to growth primarily along the long di-
mension of the array (>20% fibres broken). Second,
reaction origins in the corner of the array tend to yield
longer lifetimes than reaction origins in the centre.

The trend that the majority of the lifetime corre-
sponds to a region where less than 15–20% of the fibres
have failed would suggest that a relatively small frac-
tion of the fibres in the array would show appreciable
radius reductions at the conclusion of the simulation.
The result is consistent with microstructural evidence
of fibre-environmental reaction in failed SiC–SiC com-
posites [19].

Fig. 4 shows the effect of the force distribution ex-
ponent (n in Equations 9 and 10) on the lifetime for re-
action origins in the upper left corner, in the geometric

Figure 4 Predicted lifetime as a function of force distribution exponent
and reaction origin: •, reaction origin = corner; �, reaction origin =
centre; �, reaction origin = long edge; �, reaction origin = short edge.
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centre, centred on the upper long edge, and centred on
the left short edge of the fibre array. For force distri-
bution exponents of three or larger, the lifetime was
independent of reaction origin or force distribution ex-
ponent. However, for force distribution exponents be-
tween one and two, the lifetime increased as the force
distribution exponent decreased. If the force distribu-
tion exponent is controlled primarily by the fibre-matrix
interface characteristics, this result supports the concept
that interface design is vital to composite behaviour. In
addition, the longest average lifetime was calculated for
a reaction origin at the corner, and the shortest average
lifetime was calculated for a reaction origin at the cen-
tre. Reaction origins centred on the long or short edge
of the array yielded intermediate results. From Fig. 4,
the reaction origin had a significant influence on the
predicted lifetime at low force distribution exponents.

The effect of the force distribution exponent is to
localize the distribution of forces from broken fibres
(Equation 9). As the force distribution exponent in-
creases, the fibres neighbouring broken fibres receive
a larger fraction of the force distributed from those
broken fibres. Fig. 5 shows the effect of the normaliz-
ing term (denominator in Equation 9) on the predicted
lifetime for reaction origins in the upper left corner, ge-
ometric centre, centred on the long edge, and centred
on the short edge. As the force distribution exponent in-
creases, the denominator in Equation 9 decreases. Fig. 5
clearly shows a non-linear decrease in lifetime with de-
crease in the normalizing term. The normalizing term
for force distribution exponents of four, six and eight is
largely independent of reaction origin, and the lifetimes
are largely independent of reaction origin. This trend
suggests that near-neighbour effects dominate at force
distribution exponents greater than four.

The dashed lines in Fig. 5 are lines of constant force
distribution exponents for exponents less than three. In
these cases, the lifetimes decrease as the reaction origin

Figure 5 Predicted lifetime as a function of the normalizing term in
Equation 9 and reaction origin. The dashed lines are lines of constant
force distribution exponent: •, reaction origin = corner; �, reaction
origin = centre; �, reaction origin = long edge; �, reaction origin =
short edge.

changes from the corner to the centre even though the
normalizing term increases. Reaction origins centred
on the long and short edge of the fibre array yield inter-
mediate results. This trend suggests that near-neighbour
effects play a secondary role for force distribution ex-
ponents less than two. Remember that two stages of
fibre failure are evident in Fig. 3. The initial stage (low
rate of increase of percent of fibres broken) occurs with
progression of the region of fibre failure across the short
dimension of the array. The second stage (high rate of
increase of percent of fibres broken) occurs when the
region of fibre failure grows across the long dimension
of the array. For a reaction origin in the upper left corner
(Fig. 6a), the region of fibre failure must grow across
the entire width of the array before the initial stage
is completed. Completion of the second stage requires
growth across the entire array length. For a reaction
origin in the centre of the array (Fig. 6b), the region of
fibre failure must grow across one-half the width of the
array in the initial stage, and one-half the length of the
array in the second stage. It should be noted that growth
occurs from the reaction origin in opposite directions
simultaneously in both the initial and second stages.
A reaction origin centred on the short edge (Fig. 6c),
the region of fibre failure must grow across one-half
the width of the array in the initial stage, and across the
entire length in the second stage. For a reaction origin
centred on the long edge (Fig. 6d), the region of fibre
failure must grow across the entire width of the array
in the initial stage, and across one-half the length in the
second stage.

If the rate of growth of the region of fibre failure is
assumed to be independent of reaction origin, the life-
time should correlate to a combination of the distances

Figure 6 Schematic of the direction of growth of the region of fibre
failure for both the initial and second stages for (a) reaction origin in the
upper left corner, (b) reaction origin in the geometric centre, (c) reaction
origin centred on the short edge, and (d) reaction origin centred on the
long edge.
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Figure 7 Predicted lifetime as a function of the maximum radial distance
from the reaction origin to the farthest corner of the fibre array.

of growth in both the initial and second stages. An ap-
propriate combination of these distances would be the
maximum radial distance from the reaction origin to
the furthest corner of the array dmax given by

dmax = [
(dinitial)

2 + (dsecond)2]1/2
(10)

where dinitial is the distance of growth in the initial stage
and dsecond is the distance of growth in the second stage.

Fig. 7 shows the lifetime as a function of maximum
radial distance, dmax Fig. 7 does show a trend of in-
creased lifetime for increased maximum radial distance
for force distribution exponents of 1, 1.5 and 2.0. At the
same time, the lifetime is independent of the maximum
radial distance for force distribution exponents of four,
six and eight. Also apparent is the trend that a reduction
of force distribution exponent has a more pronounced
influence on the lifetime for reaction origin character-
ized by larger maximum radial distances. Therefore,
a change of force distribution exponent from four to
one caused a more dramatic increase in lifetime for a
reaction origin at the corner (dmax = 41.5 fibre spac-
ings) than for a reaction origin at the geometric centre
(dmax = 21.8 fibre spacings).

Fatigue type behaviour is traditionally [38] quantified
by the following expression

tf = A(σnom)−nf (11)

where tf is the lifetime; A, a constant; σnom, the nominal
stress; and nf the fatigue exponent.

Equation 11 can be written in normalized form as
follows

tf
(tf)82.5 MPa

=
{[

(σchar)−nf

(tf)82.5 MPa

]
A

}(
σnom

σchar

)−nf

(12)

where (tf)82.5 MPa is the lifetime at 82.5 MPa, and σchar
is the characteristic fibre strength.

Figure 8 Normalized lifetime as a function of normalized nominal
stress.

Normalizing to the lifetime at 82.5 MPa applied
stress permitted convenient comparison of the numer-
ical results with experimental results reported in the
literature. Fig. 8 shows the effect of stress on lifetime
plotted according to Equation 12. Simulation results
predicted from expected reaction rate of 5, 1 and 0.2%
per time step are shown in Fig. 8. The simulation re-
sults have been normalized to the average lifetime at
82.5 MPa and an expected reaction rate of 1% per time
step predicted by the simulation. Clearly, the lifetime
decreased as the stress increases. Between normalized
stress levels of 0.05 and 0.125 (solid lines in Fig. 8)
behaviour consistent with Equation 12 was observed.
Fatique exponents of 1.5, 1.3 and 1.1 were calculated
for simulation results predicted from expected reaction
rates of 0.2, 1 and 5% per time step, respectively. This
behaviour is consistent with fatiguetype behaviour. It
should be noted that at normalized stress levels below
0.05 (about 50 MPa nominal stress), no matrix crack
formation has been reported [39], and the environment
would not have a path to the fibres. For normalized
stress levels greater than 0.125, the simulation results
did not follow a trend consistent with Equation 12. At
high stress levels (normalized stress of 0.20), the life-
times converged to a constant independent of expected
reaction rate. This result suggested the simulation was
dominated by stress at high stress levels.

Also shown in Fig. 8 is the data of Verrilli et al. [8]
at nominal stress levels of 69 and 82.5 MPa and tem-
peratures ranging from 600 to 982 ◦C and the data of
Lara-Curizo [9] at stress levels of 80, 100 and 120 MPa
at a temperature of 950 ◦C. The experimental data have
been normalized to experimental data at 82.5 MPa [8].
The experimental data clearly show a decreased life-
time with increased nominal stress, but show a more
rapid change in lifetime with changes in stress. Also,
the experimental data clearly show more variability at
any stress than predicted by the simulation. It is not
possible to draw a direct correlation between the sim-
ulation and reported experimental results since the rate
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of carbon oxidation was studied [9], but the rate of fibre
attack was not reported [8, 9]. In addition, the experi-
mental data were developed using composites charac-
terized by stacked layers with each layer characterized
by a 0–90◦ plain weave.

While the simulation suggests that the fatigue ex-
ponent increases with decreased reaction rates, a very
slow reaction rate may show excellent correlation to the
experimental data. However, such a correlation would
require sufficient knowledge of the fibre–environment
reaction process to yield a correlation between real time
(hours) and simulated time (time steps). However, since
the experimental data appear to cross the simulation re-
sults in such a way as to suggest a functional depen-
dence between the nominal stress and reaction rate, an
alternate approach to simulating the experimental data
could be used. Using the results in Fig. 8 as a calibra-
tion, the following empirical model was developed

R = (0.0078) exp(0.406)σnom (13)

where R is the expected reaction rate.
An exponential dependence of reaction rate on stress

has been suggested as an explanation of fatigue crack
growth in monolithic ceramics [40]. Fig. 9 shows the
results of the simulation using Equation 13 to deter-
mine the expected reaction rate as a function of nom-
inal stress and experimental data of Verrilli et al. [8]
and Lara-Curzio [9]. The simulation shows excellent
correlation with the experimental data. However, since
Equation 13 was based on an empirical fit of the exper-
imental data, the excellent correlation does not prove
that the experimental data result from a reaction mecha-
nism. However, the Monte Carlo simulation modelling
fibre-environment reactions do suggest fatigue-like be-
haviour. At the same time, the numerical results could
be interpreted as suggesting that mechanisms other than
reaction of fibres with environmental species domi-
nated the experimental results reported in the literature.

Figure 9 Comparison of predicted normalized lifetimes based on re-
action rates determined by nominal stress as a function of normalized
nominal stress with literature values.

4. Conclusions
A Monte Carlo simulation examining the effect of
fibre–environment reaction and static mechanical load
on the behaviour of a fibre tow has been developed. Fi-
bres were allowed to react with environmental species
only when an identifiable path for the reactants existed,
and forces were distributed using an inverse power
law as the fibre broke. At force distribution exponents
greater than about three, the lifetime was independent
of origin of the fibre–environment reaction. However,
at force distribution exponents less than about two, the
origin of the fibre–environment reaction did affect the
lifetime. Simulation results were shown to be dependent
on the magnitude of the mechanical load and the rate of
fibre–environment reaction. Fatigue exponents ranging
from about 1.0 to 1.5 were predicted for nominal stress
levels less than 140 MPa and reaction rates ranging from
5% per time step to 0.2% per time step, respectively.
Comparison of simulation results with literature val-
ues suggested that the simulation underestimated the
observed fatigue exponent. It was shown that a reac-
tion rate dependent on the nominal stress level could be
used to simulate literature results empirically. Further
investigation of fibre–environment reaction rates at in-
termediate temperatures is required before a definitive
relationship can be developed.
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